absolute convergence - перевод на греческий
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

absolute convergence - перевод на греческий

A PROPERTY OF INFINITE SERIES
Absolut convergence; Absolutely convergent; Absolute Convergence; Absolutely convergent series; Absolutely convergent improper integral; Absolute summability; Converges absolutely; Unconditional summability; Absolute convergence theorem; Absolutely summable

absolute convergence         
απόλυτη σύγκριση
absolute value         
NONNEGATIVE NUMBER WITH THE SAME MAGNITUDE AS A GIVEN REAL NUMBER
Modulus function; Absolute value (mathematics); Absolute Value; Absolute Value (mathematics); Absolute Values; Absolute values; Absolute Square; Abs(); Modulus of complex number; Fabs(); Math.fabs; Module of a complex number; Complex abs; Absolute value of number; Magnitude of Complex Number; Absolute value of a complex number; Modulus of a complex number; Magnitude of a complex number; Abs(x)
απόλυτη αξία, απόλυτη τιμή
απόλυτη σύγκριση      
absolute convergence

Определение

convergence
(convergences)
The convergence of different ideas, groups, or societies is the process by which they stop being different and become more similar. (FORMAL)
...the need to move towards greater economic convergence...
? divergence
N-VAR

Википедия

Absolute convergence

In mathematics, an infinite series of numbers is said to converge absolutely (or to be absolutely convergent) if the sum of the absolute values of the summands is finite. More precisely, a real or complex series n = 0 a n {\displaystyle \textstyle \sum _{n=0}^{\infty }a_{n}} is said to converge absolutely if n = 0 | a n | = L {\displaystyle \textstyle \sum _{n=0}^{\infty }\left|a_{n}\right|=L} for some real number L . {\displaystyle \textstyle L.} Similarly, an improper integral of a function, 0 f ( x ) d x , {\displaystyle \textstyle \int _{0}^{\infty }f(x)\,dx,} is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if 0 | f ( x ) | d x = L . {\displaystyle \textstyle \int _{0}^{\infty }|f(x)|dx=L.}

Absolute convergence is important for the study of infinite series because its definition is strong enough to have properties of finite sums that not all convergent series possess - a convergent series that is not absolutely convergent is called conditionally convergent, while absolutely convergent series behave "nicely". For instance, rearrangements do not change the value of the sum. This is not true for conditionally convergent series: The alternating harmonic series 1 1 2 + 1 3 1 4 + 1 5 1 6 + {\textstyle 1-{\frac {1}{2}}+{\frac {1}{3}}-{\frac {1}{4}}+{\frac {1}{5}}-{\frac {1}{6}}+\cdots } converges to ln 2 , {\displaystyle \ln 2,} while its rearrangement 1 + 1 3 1 2 + 1 5 + 1 7 1 4 + {\textstyle 1+{\frac {1}{3}}-{\frac {1}{2}}+{\frac {1}{5}}+{\frac {1}{7}}-{\frac {1}{4}}+\cdots } (in which the repeating pattern of signs is two positive terms followed by one negative term) converges to 3 2 ln 2. {\textstyle {\frac {3}{2}}\ln 2.}